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Abstract—In this paper, the utilization of Graphical Processing Units (GPUs) for computations on unstructured meshes such as
those in Finite Element Methods (FEM) will be shown. The Element-by-Element (EBE) technique is a long since known method
that can be applied to perform the parallel execution of a Conjugate Gradient (CG) type iterative solver. Instead of assembling
the global system matrix, NVIDIA’s parallel computing solution, the Compute Unified Device Architecture (CUDA) will be used
to perform the required element-wise computations parallelly. Since the element matrices will not be stored (which is unfeasible
for linear problems, but quite normal for non-linear ones), the memory requirement of this technique is extremely low. It will be
shown that this low-store and high-computational needed technique is better suited for GPUs than those facilitating the massive
manipulation of large data sets.

Index Terms—CUDA, EBE, GPGPU, parallel FEM

I. I NTRODUCTION

The Finite Element Method is nowadays one of the most
frequently used technique for engineering analysis of complex,
real-word applications of both linear and non-linear types.
The basics of the method are very well known [1], hence
here we only recall those properties that are important for our
investigations.

Let us consider the well known linear equation system of
the form

Au = b (1)

which is obtained by the FEM approximation of a Partial Dif-
ferential Equation (PDE). The solution of (1) – especially for
large size problems – is traditionally obtained using iterative
solvers, like the variants of the gradient type methods (e.g. the
Bi-Conjugate Gradient (BiCG) method).

Most iterative methods for the solution of (1) can be
described by the general formula

uk+1 = uk −Q−1(Auk − b) (2)

whereQ is a non-singular preconditioning matrix andk =
1, 2, . . . , N is the iteration number. Since the most computa-
tion intensive part in a CG iteration is the matrix-vector multi-
plication (MxV) of Auk, due to the independent computations
its parallel execution can be easily designed [2].

Among the many possibilities to carry out parallel execution
of the entire CG iteration (2), one may find the Element-by-
Element (EBE) technique [3]. Its main advantage is the ex-
tremely low memory consumption, since it does not assemble
the global system matrix, but rather traces back the manipu-
lation to the level of element matrices (see Section III-A).

Although many methods accelerating the FEM are already
implemented on GPUs [4], [5], [6], these usually suffer from
the strict limitation of available memory. As large scale FEM
problems need large storage capacity, the several GB of
available memory on GPUs must be continuously cached to the
global system memory through the relatively slow bus system.

II. A IM OF THE WORK

As the gap between bus speed and computation density
increases, codes which use the accelerator design (that is,only
computation intensive parts of the program are executed on
the GPU) will fall behind codes that take full advantage of it
[7]. The latter perform all the necessary computations on the
GPU, in contrary to the accelerator design, where e.g. only the
MxV operation is performed on precomputed and transferred
elements. Based on the precedings, the cost of data transfers
is increasing relative to the amount of computation.

The aim of this paper is therefore to extend the scope of
problems GPUs can effectively handle, by avoiding large scale
data transfers. Relying on the fact it is cheaper to recompute
element matrices than continuously cache the global matrix
between GPU and system memory, the EBE technique will
be revisited to solve (almost) arbitrarily big problems, which
traditionally requires substantial data transfer, and hence is
time consuming.

III. E LEMENT-BY-ELEMENT METHOD

A. Element-wise computations

A typical finite element assembly program relies on given
element subroutines to compute an element matrixAe. These
subroutines vary on the type of the PDE that must be solved
as well as on the type of the applied basis functions. The
constructed element matrices are then expanded to the size of
the full global equation system (with other entries being zero)
corresponding to someglobal numbering, and are summarized
as

A =

E
∑

e=1

Âe (3)

whereE is the number of elements, and̂Ae is the contribution
of the expansion of the element matrixAe. In contrary to the
sparse expanded element matrix,Ae is dense with the size of
ne × ne (ne being the local degrees-of-freedom).



Substituting (3) into (2), one obtains

Auk =

(

E
∑

e=1

Âe

)

uk =

E
∑

e=1

(

Âeû
e

k

)

=

E
∑

e=1

Âeu
e

k
(4)

whereûe

k
is an “expansion” with non-zeros only at positions

corresponding to elemente, ue

k
is the dense representation of

ûe

k
, and the “hat” operator corresponds to global expansion.

Therefore individual products in (4) can be computed at
element level as dense matrix-vector multiplications [3].

Since the global system matrix is never assembled, there
is no need for the clever, hence computation intensive global
numbering of the nodes (and edges), which is critical to havea
low bandwidth matrix. The lack of global numbering will also
ease up handling of adaptively refined unstructured meshes,
because the summation in (4) can be computed in any order.

B. Parallel processing of EBE

Because GPUs are designed for total computational
throughput rather than fast execution of serial calculations,
they have the potential to dramatically speed-up scientific
computing applications over multi-core CPUs. To achieve high
computational throughput, GPUs have hundreds of lightweight
cores and execute tens of thousands of threads simultaneously.

The GPU parallel processing of (4) can be done efficiently,
since the assembly of local element matrices is a computation-
ally intensive task with a low amount of required information.
As the number of element matrices can be arbitrarily large,
and they are independent from each other, their assembly can
take full advantage from the given architecture.

On shared memory architectures like the GPU (similar to
distributed memory architectures), an important questionis
how the partial products are summarized. If the different
threads have significantly different number of elements to deal
with, the ill-balanced partitioning will result in the underuti-
lization of the device.

The key challenge in the global update is to ensure that
contributions from two local nodes, associated with an iden-
tical global node, do not update some global value from
different threads. This leads to the concept of coloring, which
has successfully been used previously in the context of finite
elements on supercomputers [8], [9] and through which the
dependencies between mesh points can be suppressed.

C. Matrix-storage free approach

The lack of assembling the global system matrix makes the
method applicable in GPU computing environments, where the
amount of stored data is critical, but raises several problems,
too. The first one is related to preconditioners, which tradition-
ally need the system matrix in assembled form. To overcome
this problem, one may use some sophisticated element-by-
element preconditioner [9], [10].

The second problem is related to the required computational
demand. Since element matrices are not stored, they must
be recomputed in each iteration. Note that it is not needed
for linear problems, and seems to be a waste of time. On
the other hand, for nonlinear problems the re-computation of

element matrices is required anyway, and the same holds if
we use some mesh refinement/reduction techniques during the
iteration [11]. Therefore CUDA parallel EBE may perform
best for non-linear problems and dynamic meshing, significant
acceleration of linear problems is also expected though.

IV. FLOATING POINT PRECISION

In most cases the assembling of local element matrices and
the computations on them require double precision represen-
tation of floating numbers. Although many GPUs are capable
nowadays to perform such computations, their throughput is
much more moderate than for single precision computations.
To fully utilize GPUs, and also to fulfill the requirements of
double precision computation, the so-calledmixed precision
iterative refinement [12] will be applied.

Although the GPU implementation of the mixed precision
iterative refinement is already carried out [6] and proved to
be more efficient than full-double precision computations,the
main drawback of the presented method is its need for the
global system matrix.

V. NUMERICAL EXAMPLES

To demonstrate the capabilities of EBE parallel comput-
ing of FEM on GPUs, numerical examples will be given
for different sizes and types for both linear and non-linear
properties. Pure single and double precision computationswill
be carried out, and the effect of using the mixed precision
iterative refinement compared with them will be shown.
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