Parallel realisation of the Element-by-Element FEM
techniqgue by CUDA

Imre Kiss, Szabolcs Gyimoéthy and Jozsef Pavo

Budapest University of Technology and Economics, Egrysdbmntca 18, H-1111 Budapest, Hungary
E-mail: kiss@evt.bme.hu

Abstract—In this paper, the utilization of Graphical Processing Unts (GPUs) for computations on unstructured meshes such as
those in Finite Element Methods (FEM) will be shown. The Elerent-by-Element (EBE) technique is a long since known method
that can be applied to perform the parallel execution of a Cojugate Gradient (CG) type iterative solver. Instead of assmbling
the global system matrix, NVIDIA's parallel computing solution, the Compute Unified Device Architecture (CUDA) will be used
to perform the required element-wise computations paralldly. Since the element matrices will not be stored (which is ofeasible
for linear problems, but quite normal for non-linear ones), the memory requirement of this technique is extremely low. 1 will be
shown that this low-store and high-computational needed technique is better suited for GPUs than those fadiliting the massive
manipulation of large data sets.

Index Terms—CUDA, EBE, GPGPU, parallel FEM

|. INTRODUCTION II. AIM OF THE WORK

The Finite Element Method is nowadays one of the mostAs the gap between bus speed and computation density
frequently used technique for engineering analysis of derp increases, codes which use the accelerator design (tloatlys,
real-word applications of both linear and non-linear typesomputation intensive parts of the program are executed on
The basics of the method are very well known [1], henabe GPU) will fall behind codes that take full advantage of it
here we only recall those properties that are important éor o[7]. The latter perform all the necessary computations @n th

investigations. GPU, in contrary to the accelerator design, where e.g. drdy t
Let us consider the well known linear equation system ®lxV operation is performed on precomputed and transferred
the form elements. Based on the precedings, the cost of data transfer
Au=>b (1) is increasing relative to the amount of computation.

L . L . .. The aim of this paper is therefore to extend the scope of
which is obtained by the FEM approximation of a Partial Dif- ; .-
ferential Equation (gDE). The sgﬁjtion of (1) — especiatly f problems GPUs can effectively handle, by avoiding largéesca

large size problems — is traditionally obtained using iieea data transfers. Relying on the fact it is cheaper to recomput

: . ; element matrices than continuously cache the global matrix
solvers, like the variants of the gradient type methods (bay between GPU and svstem memorv. the EBE technique wil
Bi-Conjugate Gradient (BiCG) method). y Y q

Most iterative methods for the solution of (1) can bﬁzgﬁ\gigﬁd :Z Slﬁlr\(/ai (slljrggtsat%t?;lbggglytrzlr?s?er?b;?zgemistiI
described by the general formula . y red '
time consuming.

1 = u, — Q' (Auy — b) (2)
where Q is a non-singular preconditioning matrix amid= . .ELEMENT'BY'ELEMENT METHOD
1,2,..., N is the iteration number. Since the most computd). Element-wise computations

tion intensive part in a CG iteration is the matrix-vectorltau A typical finite element assembly program relies on given
plication (MxV) of Auy, due to the independent computationelement subroutines to compute an element matrix These
its parallel execution can be easily designed [2]. subroutines vary on the type of the PDE that must be solved
Among the many possibilities to carry out parallel exeauticas well as on the type of the applied basis functions. The
of the entire CG iteration (2), one may find the Element-byonstructed element matrices are then expanded to thefsize o
Element (EBE) technique [3]. Its main advantage is the ete full global equation system (with other entries beingp}e
tremely low memory consumption, since it does not assemlglérresponding to somglobal numberingand are summarized
the global system matrix, but rather traces back the manips
lation to the level of element matrices (see Section IlI-A). B
Although many methods accelerating the FEM are already A= ZAG
implemented on GPUs [4], [5], [6], these usually suffer from
the strict limitation of available memory. As large scaleMFE whereE is the number of elements, ar, is the contribution
problems need large storage capacity, the several GB dffthe expansion of the element matek.. In contrary to the
available memory on GPUs must be continuously cached to tgarse expanded element mate, is dense with the size of
global system memory through the relatively slow bus system. x n. (n. being the local degrees-of-freedom).

®3)

e=1

Substituting (3) into (2), one obtains element matrices is required anyway, and the same holds if
P E E we use some mesh refinement/reduction techniques during the
Au, — A u = Aae) = A.u° (4) Iteration [11]. Therefore CUDA parallel EBE may perform
g (; e) § Z(© k) ; %) best for non-linear problems and dynamic meshing, sigmifica

o B e ... __acceleration of linear problems is also expected though.
where, is an “expansion” with non-zeros only at positions

corresponding to elemeet ug, is the dense representation of
ay, and the “hat” operator corresponds to global expansion.
Therefore individual products in (4) can be computed at In most cases the assembling of local element matrices and
element level as dense matrix-vector multiplications [3]. the computations on them require double precision represen
Since the global system matrix is never assembled, théaéion of floating numbers. Although many GPUs are capable
is no need for the clever, hence computation intensive gloi¥wadays to perform such computations, their throughput is
numbering of the nodes (and edges), which is critical to lravénuch more moderate than for single precision computations.
low bandwidth matrix. The lack of global numbering will alsoT© fully utilize GPUs, and also to fulfill the requirements of
ease up handling of adaptively refined unstructured mesh@dguble precision computation, the so-calieiked precision
because the summation in (4) can be computed in any ordégrative refinement [12] will be applied.
Although the GPU implementation of the mixed precision
. iterative refinement is already carried out [6] and proved to
B. Parallel processing of EBE be more efficient than full-double precision computatiahs,
Because GPUs are designed for total computationakin drawback of the presented method is its need for the
throughput rather than fast execution of serial calcutejo global system matrix.
they have the potential to dramatically speed-up scientific
computing applications over multi-core CPUs. To achiewghhi V. NUMERICAL EXAMPLES
computational throughput, GPUs have hundreds of lightiateig

. To demonstrate the capabilities of EBE parallel comput-
cores and execute tens of thousands of threads simultdpeous . . .
The GPU parallel processing of (4) can be done efficiently.) of FEM on GPUs, numerical examples will be given
P P 9 %or different sizes and types for both linear and non-linear

since the assembly of local element matrices is a computatio roperties. Pure sinale and double precision computaidiis
ally intensive task with a low amount of required informatio brop : 9 P P

: oo be carried out, and the effect of using the mixed precision
As the number of element matrices can be arbitrarily larg : , :)
) . [ferative refinement compared with them will be shown.
and they are independent from each other, their assembly can

take full advantage from the given architecture.
On shared memory architectures like the GPU (similar to
distributed memory architectures), an important quest®on [1] J.-M. Jin, The Finite Element Method in Electromagnetind ed.

how the partial products are summarized. If the different, év"?:y"E;'zyprgssé;frggzyooé' McLay, and M. Sharma, “Elersiant

threads have significantly different number of elementsetal d element vector and parallel computation§dmmun. appl. numer. meth-

with, the ill-balanced partitioning will result in the unagi- 3l gdstgl. 4, no.di“qur’J\-l 2J99—307I,E|1988- el inaad non

P . . F. Carey and B.-N. Jiang, “Element-by-element linaad nonlinear

lization of the device. . . solution schemes,appl. num. meth.vol. 2 (2), pp. 145-153, 1986.
The key challenge in the global update is to ensure thad] J.Bolz, I. Farmer, E. Grinspun, and P. Schrooder, “Seanatrix solvers

contributions from two local nodes, associated with an iden on the GPU: conjugate gradients and multigridCM Trans. Graph.

; vol. 22, pp. 917-924, July 2003.
tical g|0ba| node, do not uPdate some g|0ba| value fron?S] C. Cecka, A. Lew, and E. Darve, “Introduction to assembfyfinite

different threads. This leads to the concept of coloringicivh element methods on graphics processot§)P Conference Series:
has successfully been used previously in the context okfinit Materials Science and Engineeringol. 10, no. 1, p. 012009, 2010.

:] A. Cevahir, A. Nukada, and S. Matsuoka, “Fast conjugatadignts
elements on supercomputers [8], [9] and through which th@ with multiple GPUs,” inICCS 2009 G. G. van Albada, J. Dongarra,

dependencies between mesh points can be suppressed. and P. Sloot, Eds., 2009, vol. 5544, pp. 893-903.
[7] 1. Kiss, J. Pavd, and S. Gyimothy, “Acceleration of ment method
using CUDA,” in Proceedings, IGTE 201®010, (to apper soon).
C. Matrix-storage free approach [8] C. Farhat and L. Crivelli, “A general approach to nonknd-E computa-
. . tions on shared-memory multiprocesso@gmputer Methods in Applied
The lack of assembling the global system matrix makes the mechanics and Engineeringol. 72, no. 2, pp. 153-171, Feb. 1989.
method applicable in GPU computing environments, where thi@] A. J. Wathen, "An analysis of some element-by-elemermhtigues,”

; i ; Computer Methods in Applied Mechanics and Engineerivg. 74,
amount of stored data is critical, but raises several proble ho. 3, pp. 271-287. Sep. 1989,

too. The first one is related to preconditioners, which ti@adt [10] G. Golub and Q. Ye, “Inexact preconditioned conjugatdignt method
ally need the system matrix in assembled form. To overcome with inner-outer iterations,SIAM J. on Scientific Computingol. 21(4),

h ot _hy. Pp. 1305-1320, 2000.
this problem, one may use some sophisticated element PM] S. Gyimothy and |. Sebestyen, “Symbolic descriptioriiel calculation

element preconditioner [9], [10]. problems,”Magnetics, IEEE Transactions prol. 34, no. 5, pp. 3427
The second problem is related to the required computational —3430, 1998.

demand. Since element matrices are not stored, they migét A: Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and 8mdv, “Using

. . . L. mixed precision for sparse matrix computations to enhaiee pier-
be recomputed in each iteration. Note that it is not needed formance while achieving 64-bit accurac'CM Trans. Math. Softw.
for linear problems, and seems to be a waste of time. On vol. 34, pp. 17:1-17:22, July 2008.

the other hand, for nonlinear problems the re-computatfon o

e=1

IV. FLOATING POINT PRECISION

REFERENCES

